If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-4w=252
We move all terms to the left:
w^2-4w-(252)=0
a = 1; b = -4; c = -252;
Δ = b2-4ac
Δ = -42-4·1·(-252)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-32}{2*1}=\frac{-28}{2} =-14 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+32}{2*1}=\frac{36}{2} =18 $
| 3(p-7)=4p-18 | | 9z+10=z+34 | | 7v=2v=20 | | 7x-2x+3=15x-2 | | 10s=9s−2 | | ½x+5=2/3x-4 | | 4x-62x=-9 | | -3(-4b-1)=23+2b | | -2(1-7n)5n=34 | | 36-7g=-7(g-5) | | -3(-3+3r)=-36 | | -1.1+x/3=-8.6 | | 177+12x=-45 | | 3-(-3+3r)=-36 | | 12w^2-13w-2=0 | | 4n+36n=8-2n | | 5=2(k-1)+3(2-k) | | 5x-4x=-3+20 | | 7(x+1)=2x=37 | | -4t=-5t−7 | | 20j−18j+3=19 | | -8+4(p-3)=16-2p | | 68=-4(2+-3x) | | 5x+2(3x-1)=-46 | | -2n+5=-2(n+1) | | 76=5(4-2x)-4x | | 17t+4t+-14t+4=18 | | u/4-10=5 | | 5/4y=25/2 | | 80x=x-18 | | 7u=9u−10 | | 4(6-3x)-7=-103 |